Компания ООО "Бентос", Санкт-петербург, Телефон: 8 (812) 425-36-30 , Факс: 8 (812) 425-36-30 , e-mail: benthosoil@gmail.com Время работы с 9.00 до 18.00. Сб. вс. - выходной.

Промышленные смазки

Смазочное масло из недостаточно герметичного узла трения обязательно вытечет, так как оно представляет собой нормальную жидкость, способную бесконечно деформироваться под действием даже ничтожных сил. Иное дело смазка. Благодаря существованию жесткого «каркаса» при небольших касательных напряжениях смазка ведет себя как твердое тело, но когда касательное напряжение достигает некоторой критической величины-предела прочности на сдвиг, «каркас» ломается и смазка начинает течь как жидкость. По прекращении движения «каркас» образуется вновь-смазка опять превращается в твердое тело. Подобные вещества называются аномальными жидкостями.
Смазку получают путем добавления к смазочному маслу (дисперсионной среде) загустителя, способного образовывать «каркас». В качестве дисперсионной среды смазок, применяемых в автомобиле, обычно берут мало и средневязкие нефтяные смазочные масла, например, для солидола — индустриальные (в том числе машинное СУ), для Литола-24 смесь веретенного АУ и Индустриального-50. В качестве загустителя чаще всего применяют соли жирных кислот — мыла. По массе загуститель составляет обычно 10…20%. Смазка может иметь присадки для предотвращения окисления, повышения стабильности, улучшения вязкостно-температурных свойств и др., причем присадки могут содержать масло, на котором смазка готовится. Например, для повышения низкотемпературных свойств может использоваться маловязкое масло с жидкой загущающей присадкой или деспрессатором. Ради упрощения и сокращения изложения здесь допущены некоторые неточности. Тому, кто подробнее хочет ознакомиться со смазками, рекомендую книгу В. В. Синицына «Подбор и применение пластичных смазок». М.: Химия, 1974. Старым термином «смазка», «пластичный смазочный материал» (термин по ГОСТ 20765-75). Процесс же введения смазки в пары трения или нанесения ее на поверхность буду называть термином «смазывание».
Кроме присадок в смазку может добавляться твердый наполнитель, который в отличие от загустителя не образует «каркаса». Наполнитель чаще всего чешуйчатый графит или дисульфид молибдена улучшает антифрикционные свойства смазки.
Вода в смазке может быть составной частью или содержаться в качестве примеси. Присутствие воды в большинстве смазок (литиевых, алюминиевых, свинцовых, комплексных кальциевых и др.) не допускается, но в кальциево-натриевых смазках вода играет роль структурообразующего компонента и уменьшение ее содержания приводит к распаду смазки. Содержание воды в этих смазках колеблется от 0,5 до 5%, причем присутствие воды в данном случае никак не сказывается на коррозионных свойствах смазки.

Поведение смазки гораздо сложнее, чем смазочного масла, поэтому для всесторонней оценки эксплуатационных качеств нужно рассматривать достаточно большое количество свойств.
Смазка как твердое тело характеризуется пределом прочности, а как жидкость — вязкостью.
Прочность смазки должна быть достаточной, чтобы смазка не сбрасывалась с движущихся деталей, не вытекала из узлов трения. Но с другой стороны, слишком прочная смазка плохо, а то и совсем не будет поступать в зону контакта трущихся пар, будет приводить к заеданию, например, таких узлов, как замки дверей, багажника, капота. Чем ниже предел прочности, тем мягче смазка.
Вязкость характеризует поведение смазки, когда она течет. В отличие от смазочного масла, вязкость которого при определенной температуре величина постоянная, вязкость смазки сильно зависит от скорости деформации: с увеличением ее она понижается. Это — положительное явление, так как оно снижает энергетические потери в подшипниках качения: моменты трения в подшипнике при работе на смазке и на масле мало отличаются.

Смазочная способность смазки аналогична смазочной способности масла, о которой было рассказано в предыдущем разделе.
Теплостойкость и морозостойкость. Когда достигается температура каплепадения, смазка как твердое тело перестает существовать. Но некоторые смазки уже при меньшей температуре распадаются на масло и загуститель, другие-при нагревании и последующем охлаждении из-за химических превращений, окисления или испарения термоупрочняются, т. е. предел прочности недопустимо увеличивается и они теряют смазочные свойства. Морозостойкость смазки определяется способностью ее при низкой температуре восстанавливать свой «каркас», а также течь, т. е. не застывать. При более низкой температуре смазка либо не позволит движущимся парам взаимно перемещаться, либо при приложении больших усилий расслоится и не будет проникать в зону контакта.
Механическая стабильность — это способность смазки сохранять свои свойства после деформации. После интенсивного деформирования свойства смазки меняются: у большинства смазок понижается предел прочности — происходит разупрочнение. Затем в течение некоторого времени — периода «отдыха» — предел прочности постепенно увеличивается, однако иногда он не достигает исходной величины, а иногда, наоборот,— ее превосходит, происходит тикстропное упрочнение смазки. Изменение свойств зависит как от интенсивности, так и от продолжительности воздействия. В условиях эксплуатации необратимое разрушение смазки может произойти и в течение часов, и в течение месяцев. В шаровых шарнирах «Москвича» испытывали жировой солидол и униол. Солидол в результате деформации сильно разупрочнился, а при «отдыхе» медленно восстанавливал свою прочность и вследствие этого вытекал из шарнира. Униол же несколько размягчался, быстро восстанавливался при отдыхе и хорошо удерживался в шарнирах, обеспечивая их нормальную работу. Механически нестабильную смазку нельзя применять в недостаточно герметичных узлах.

WorldMap white

Адрес: 197342, г. Санкт-Петербург, ул. Лисичанская д.14, литер. А
Телефон: 8 (812) 425-36-30 Факс: 8 (812) 425-36-30
E-mail: info@benthosoil.ru